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Abstract. This paper asserts that the set of basic lawsasfsidal mechanics is an inductive
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INTRODUCTION

Here we take a look at the foundations of classical mechanics from somevédrandif
perspective in an attempt to show that the laws of Newton andwthef laniversal
gravitation all follow from a single principle. That sounds likaudetched idea, but as
John E. Littlewood has noted Erasmus Darwin held that every so often you should
try a damn-fool experiment. He played the trombone to his tulips. Thigidart
result was in fact negativeDarwin’s rule, notwithstanding its humorous attire, is
worth to be taken quite seriously.

KINETIC ENERGY AND GALILEAN PRINCIPLE OF
RELATIVITY

One of the fundamental notions of classical mechanics is thatetidkenergy. Every
high school student knows that kinetic energy of a moving body equalghlealf
product of mass and velocity squar&d= mV#/2. This functional relation is a direct
and simple corollary of the second law of Newton.

Is it feasible to derive the formula for kinetic energy withappealing to Newton’s
second law? What is kinetic energy to begin with? Lackingeaige definition, one
could start with an obvious observation that kinetic energy is assdorth the
capacity of a moving body to inflict some “damage”, or enact smmange” in the
state of another body at impact solely due to the fact thatntoving as avhole
Daily experience suggests that this capacity — live forcee#miz called it — is a
monotonically increasing function of both mass and velocity. Ruling ouioa fre
possibility that kinetic energy might vary with other parametiks volume,
temperature, shape, etc. is perhaps questionable, but functionanr&lat F(m,v)
seems, at least, a reasonable heuristic conjecture.



Interaction of Two Identical Bodies

Here we do not engage in a detailed discussion of what inerdiss s; we simply
take it as aradditive measure of material body’s ability to resist changingtiése of
motion. Let us fix the speed of a moving body and try to work out uhetibnal

relation between material object’s kinetic energy and its nkas&:(m,w)=g(m).
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FIGURE 1

If two identical bodies moving with the same absolute speed from épmbsections

along a horizontal, flat, and frictionless surface can compressasticespring to a

certain degree before coming to a complete stop, then two suchopadzdies

evidently have the capacity of compressing two such springpetesame degree. This

is a simple symmetry argument. Hence, due to assumed additivity of inert&gl mas
2g(m) = g(2m)— d(m) = d(2m) — g(m) ~m; (1.1)

I. e. kinetic energy of a moving body is proportional to its miégssmf(v).

Galilean principle of relativity, as we show next, imposesagerestrictions on the
functionf(v). Imagine two identical bodies moving with the same spealbng a flat,
horizontal, and frictionless surface; between the bodies, there desmgpressed

massless elastic spring prevented from decompressing by a thread (Fig. 2).

w
-

willk

-V+w v+w

] VVVVE - FIGURE 2
Cutting the thread releases the spring thereby changing kinetic eri¢hgysystem:
AK = mf(—=v+w) + mf(v+w) — 2mf(w). (1.2)

Seeing different values @f as velocities of different inertial reference frames, et g
a restraining condition ohimposed by Galilean principle of relativity:

f(—v) + f(v) = f(—=v+w) + f(v+w) — 2f(w). (1.3)
Assuming double differentiability dfand differentiating (1.3) by then byw, we get:
f'(—v+w) = £ (v+w). (1.4)
The general solution of this equation, satisfying the condi{@n= 0O, is:
f(v) = aV + bv. (1.5)

Thus, using nothing but Galilean principle of relativity and elemensgrmgmetry
arguments, we have managed to reduce conjectured functional r&atk(m,v)to

K = m(av + bv). (1.6)



Vis Viva Controversy

Symmetry arguments will prove invaluable in narrowing down theesgon (1.6)
even further. On the one hand, since kinetic energy is associated/elotity, it
would seem reasonable to argue that it should be defined and tesatedector
guantity. On the other hand, there is no reason to believe that a hdlyz@itag
object has more capacity to inflict “damage” compared te#mee object flying at the
same speed in the opposite direction, therefar@V + bv)| = [m(av — bv)|.For this
eqvlzjality to hold eithea, or b must be necessarily zero, that is eitker mv,or K ~
mv.

Which one is correct? That was precisely the subject ofatheus debate that
started in the 177 century and became known in the history of scienceiawiva
controversy Descartes (1633 and 1644), and later Newton, had arguedshatais
the product of mass and velocity. Leibniz objected to this (1686) thatimems with
falling and rising bodies indicatgs vivato be another quantity: the product of mass
and velocity squared. Although today it seems hard to understand how a dikecept
kinetic energy could be controversial, the heated exchange drew dtistriolis
scholars in, and the dispute lasted for almost 100 years. It isfhotldithough, to
demonstrate that conjectufe~ mvcontradicts Galilean principle of relativity.

K = mf(v) K=0

mf(v) > 2mf(v/2) AN
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At the top of Fig. 3 we see two identical bodies on a horizomiglfactionless flat
surface; one is moving with velocityand the other is at rest. As soon as the moving
body hits the elastic spring it starts slowing down, and thengedibdy starts
accelerating. At some point — at the point of maximum spring casipreto be exact

— velocities of the bodies get equal and, for a split of a secondll theyhoving with

the same spead= v/2 Indeed, in a reference frame moving from the left to the right
with velocity v/2, perfect symmetry in the motion of identical bodies becomes
apparent; therefore, exactly at the moment of maximum springression, both
bodies will come to rest. Switching back to the original frameeférence we get
u=v/2. Prior hitting the spring, kinetic energy of the moving body Was mf(v). At

the point of maximum spring compression, share of this energy, sp#gifnf(v/2)

has been retained by the moving body; equal share of the energgdrapassed to
the other body; yet another share went to changing the spring statenitompressed

to that of maximum compression. Without resorting to the law afggnepnservation
(note that we haven’t defined the notion of potential energy; indeedlowé even




have to for our purposes!), we cannot tell exactly what portion of &ieetrgy has
been wasted to “damage” the spring. Nevertheless, there can be no doubt that

mf(v) > 2mf(v/2) (1.7)

Inequality (1.7) is obviously impossible witfv) ~ vy so we have only one option left,
namelyf(v) ~ \, with the corresponding final expression for the kinetic energy:

K = kmv (1.8)

Principal Schema for Experimental Testing

We have arrived at inescapable inductive logical inferencete@alrelativity implies
K = km\%. Is there a simple and convincing way to test this experimgntéllis
important to note that we haven’t defined any methodology for congpdrstinct
“damages” caused by distinct sources of kinetic energy. Buistiit necessary at all
for experimental verification of the formula for kinetic energydded, suffice to
confirm that a body of mass moving with velocityv has a capacity to inflict the
same‘damage” as the body of mags moving with velocity/A2.
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If two pairs of identical bodies moving symmetrically alongasizontal flat surface
with no friction, as shown in Fig.4, do compress two identical elagtiings to the
same degree, i.e. D, = Dy, then a logical conclusion follows that a body of mass
moving with velocityv has the same amount of kinetic energy as the one of2mass
moving with velocityv/N2. That constitutes a conclusive experimental argument in
favour of the derived above formula for kinetic enefgy kmv/.

Newton’s Second Law

As noted in section 1, formula for kinetic energy follows from theosd law of
Newton. Having logically derived the expression for kinetic enétgy kmv# from

Galilean principle of relativity alone, we can now turn things aroand derive
Newton’s second law from it. Constant factorcan be fixed arbitrarily without
affecting the essence of physical theory. In Newtonian mechlaridg2.
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FIGURE 5

Let a body of massn moving with some speed along a frictionless, flat and
horizontal surface be subjected to a force in the direction of mateimea short
period of timedt. The action of force changes body’s position and velocity as shown
in Fig.5. For the kinetic energy differential we have

dK = m(v+dv/2 — m#/2 = mvdv. (1.9)
Recalling the definitions of forceF(= dK/dg) and velocity ¥ = ds/d) Newton’s
second law follows from (1.9) instantly:

F = mdv/dt (1.10)
CONSERVATION OF MOMENTUM AND GALILEAN
RELATIVITY
We are not done with the implications of the Galilean principleslativity yet. The

conservation of linear momentum, as we shall prove next, is alsec darollary of
this principle.

Interaction of Two Distinct Bodies

We apply now Galilean principle of relativity to the interactwintwo objects of
different inertial mass to see where it leads.

w
m-q J\NWL my —

WtV W+Vo

«— My mz +—
VVVAVE FIGURE 6

Just like in the case of interaction of two identical bodiegasshg the compressed
spring leads to a change of kinetic energy in the system (Fig.6):

AK = km(w+v,)? + kmy(w+v,)% — k(m+m,)w? (2.1)
The magnitude of this change is the same in all inertial reference frimaeore:
kmv.2 + kmv,? = kmy(w+v.,)? + kmy(w+v,)? — k(m+m,)w? (2.2)
Past simple algebra, (2.2) yields the law of conservation of linear momentum:

mv, + myv, =0 (2.3)

It shall be noted that equation (2.3) has been derived for solid bodieshés.all
parts of each interacting body move with the same speednleigsting to see what
happens when one of the bodies is solid and the other is madleladentical and



separated from each other solid pieces in a solid container. Thenesnivhich is
kind of a black box, has mass equal to the mass of each piece it contains.

s s FIGURE 7

Another body of mass), moving originally at speed comes to a complete halt after
hitting our black box, and the container starts jumping like a froggail time
intervalsAt=(S;+Sy+...+Sy.1)/v. First it will jump byS;, then byS,, ... , then by§y.;. It
will take time interval of (N-1Ut+At=NAt for the container to advance by
S=(S+S+...+Sy.1). Therefore the average velocity of the black BoxS/(NAt)=v/N,
does not depend oft. The total impulse of the system before the collision was equal
to mv. After the collision, the total mass of the black box\, multiplied by the
average velocity of the container|N, yields the same impulsay, i.e. the impulse of
the black box calculated in this way is also conserved. That aveedg@ty V is,
obviously, the velocity of the center of mass of the black box.

This may appear a bit paradoxical. Indeed, by taking to thedimi O, it seems
that black box advance can be made as smooth as desired. The to@kkieagy of
the black box then would HenN)V#/2 = (m\#/2)/N, i.e. it looks like we have lost most
of the original kinetic energyV//2! This “paradox” has a simple explanation: no
matter how “smooth” the advance of the black box as a whole rajgbgar to the
naked eye, only small part of it is actually moving at any given point of time.

Newton’s Third Law

The law of linear momentum conservation (2.3) has been derived wittakimg any
specific assumption about the character of the interactionoulti be via a spring, an
explosion, etc. Neither did we specify the intensity of the interaction.
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FIGURE 8

In the case of an interaction taking an infinitesimal periodiroé dt (Fig. 8), the
algebraic equation (2.3) becomes a differential one:

mdv, + mdv, =0 (2.4)

A simple division of this equation kgt leads to Newton’s third law (for every action
there is an equal and opposite reaction):

mdv/dt = —mdvw/dt — FR=-F, (2.5)



The Law of Universal Gravitation and Relativity of Scale

The law of universal gravitation asserts that every objedtaruhiverse attracts every
other object with a force which for any two bodies is proportiontiéamass of each
and varies inversely as the square of the distance between EhemGmmy/r?.
Newton was not the first to conjecture the law of gravitation, buide the first to
prove it with mathematical rigor by showing that Kepledw$, derived empirically
from the experimental observations of Tycho Brahe, follow from imeveguare law.

As Feynman has pointed uNewton made no hypotheses about the machinery
behind the phenomenon of gravitation; he was satisfied to find whatajravidid
without getting into the machinery of it.

We know that the force of electrical attraction and repulsion dewcharged
particles also varies inversely as the square of separatitimegparticles. Is this
remarkable similarity between gravitational and electrficedes a mere coincidence?
Are there some basic principles from which such behaviour of giiani&h and
electrical forces would naturally follow?
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Since surface area surrounding any gravitational or electi@e is increasing as
square of distance, it seems natural to see inverse squaraslawathematical
expression for some kind of influx conservation law (Fig.9). The pnokb¥gh this is
that neither classical mechanics nor classical electrodgeasready to deal with the
guestion of reality of an intermediary physical substance responsible for thenerg
of the interaction. Here we offer a theoretical argument ofeintdifferent nature —
the relativity of scale which is not to be confused with @aiil relativity. It does not
make sense to speak of material body’s motion unless one specibédser body
relative to which it is moving. On par with this logic, it does matke sense to speak
of material object’s size, or the distance between two such spygdess a measuring
rod is specified. This is a different type of relativity —atility of scale. Now,
following Edwin Jaynes, “if we adopt — almost surely true pdtlgesis that our
allegedly ‘elementary’ particles cannot occupy mere matheahgtoints in space, but
are extended structures of some kihdhen, as we show next, the law of universal
gravitation follows from this principle of relativity of scalpist like the laws of
Newton follow from Galilean principle of relativity.

Let us imagine that distances between all celestial bodtbg isolar system as well
as their sizes and velocities, including the sizes and distdretesgeen all their
constituent parts (‘elementary’ particles) at each and deegy of fractal structure of
matter, have been reduced, or enlarged instantaneously by the fdc{brgpfl10).
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FIGURE 10
Would such scale transformation alter the evolution of the solaemsystn other
words, would the sequence of observable configurations of the setansghange?
The answer i$10 — it would be impossible to tell the difference without “looking out
the window”. And that is precisely because the law of universaditgtion is the way
it is. Replace the inverse square law with any other law, aal@ scvariance of
equations of motion will break down.

Restricting ourselves for simplicity of presentation to theigi@gonal interaction of
two bodies, the Sun and the Earth with % m,, the equations of Earth’s motion
around the Sun are as follows:

Med?/df = GMMoxi/(x2+ X2+ x2)%2 i1=1, 2, 3 (3.1)
Since Ms = (4n/3)pRE, the equations (3.1) can be presented in a form that makes
scaling invariance apparent:
d’(x/RY/AE = (An/3)pG(X/RY[(X/R)? + (x/Rs)*+ (xJ/R)F ¥ 1=1,2,3 (3.2)
It is obvious that scaling invariance of equations of motion valthn the general
case oiN gravitating bodies as well.

It is important to note that scale invariance of depsisymaintained because scale
transformation is applied at all levels of fractal structurenatter in the universe
where there is no such thing as elementary particle. Théhftotlectron has a spin (it
rotates!) suggests that it is not an ‘elementary’ partidkehas some kind of structure.
If electron has a structure, it doesn’t seem reasonable tetetkpe the elements of
that structure would not have structures in tetn,ad infinitum

Now, if we take relativity of scale as universal principlenafure on par with
relativity of motion, the inverse square law of gravitational adgon follows as its
logical implication.

CONCLUSION

Newtonian mechanics in its entirety is an inductive implicatiorwbft we call
extended principle of relativity — Galilean relativity augmented withtingty of scale.
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